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Abstract. Patches of reverse tilt in a twisted nematic liquid crystal display device may be 
removed by inducing the same small angle of pretilt at both solid surfaces. Continuum 
theory is used to investigate the effect of this initial tilt upon a FrCedericksz transition in a 
twisted nematic in an electric field. In particular, we describe the various initial alignments 
that can occur and verify that the field has little influence until it approaches the threshold 
value corresponding to a similar cell without tilt. 

1. Introduction 

Technological interest in the commercial applications of Frkedericksz transitions in 
liquid crystals has grown rapidly over the last decade. Liquid crystals are anisotropic 
liquids composed of large, relatively rigid, rod-like molecules which tend locally to be 
parallel leading to transversely isotropic properties. It is common to refer to the axis 
of transverse isotropy as the optic axis or simply the anisotropic axis. Solid boundaries 
and externally applied electromagnetic fields can affect the orientation of the aniso- 
tropic axis, and a number of interesting experiments have been developed to investi- 
gate the competition between these orienting influences. In particular, one of the first 
Frkedericksz transitions experiments involves a sample of nematic liquid crystal at rest 
in a small gap between suitably prepared parallel plates in which the initial orientation 
of the anisotropic axis is uniformly parallel to the plane of the plates. If one applies a 
uniform magnetic field perpendicular to the plates there is no appreciable distortion of 
the initial orientation pattern until the field strength exceeds a critical value, when 
there is a transition to a perturbed configuration in which the anisotropic axis tilts in 
the direction of the field. By rotating one of the plates in its own plane relative to the 
other plate one can obtain a twisted configuration for the initial orientation of the 
anisotropic axis from the uniform parallel alignment described above. This twisted 
layer rotates the plane of polarisation of linearly polarised light and in the display 
devices proposed by Schadt and Helfrich (1971) an electric field is used to temporarily 
distort the twist. 

The performance of these twisted nematic display devices is often spoilt by the 
occurrence of patches of non-uniform contrast which are in general caused by non- 
unique distortions of the anisotropic axis within the sample. These patches can occur 
in two ways, both arising from the absence of physical polarity in liquid crystals. In the 
first instance there can be regions with positive or negative twist, and this is readily 
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remedied by incorporating cholesteric additives in the nematic liquid crystal (Raynes 
1974). The second type occurs when the field is applied and the anisotropic axis in 
some regions may tilt in the direction of the field in a sense which is opposite to that of 
the rest of the sample. Raynes (1975) has shown that these patches are removed by 
inducing small misalignments of the anisotropic axis at the solid boundaries which are 
tilted in the same sense. 

The occurrence of a FrCedericksz transition in devices with tilt is slightly puzzling 
since it is known that the electric field has an immediate effect upon the alignment 
between the plates. Fahrenschon et a1 (1976) discuss examples not involving twist 
which clearly demonstrate that there is no threshold field strength for distortion in a 
nematic possessing various degrees of tilt. On the other hand, Dafermos (1970) shows 
that slight misalignments of the magnetic field do not alter the estimate for the critical 
strength to cause a significant distortion in the Frtedericksz transitions experiment 
discussed earlier. Intuitively one would not expect small angles of pretilt to seriously 
affect the situation. The purpose of this paper is to clarify this question for twisted 
nematic liquid crystals. 

We look at the case where a sample of twisted nematic liquid crystal is enclosed 
between parallel plates in such a way that the anisotropic axis is tilted in the same 
sense at both solid surfaces, the angles of tilt being small and of the same magnitude at 
these boundaries. Various initial solutions depending on the relative magnitudes of 
the Frank constants are obtained and the theory confirms the above experimental 
observations. Our analysis predicts an immediate change in the alignment when the 
field is applied, but the deviations remain small until the field strength approaches that 
for distortion in the corresponding untilted cell with twist. The analysis is similar to 
that of Dafermos (1970) when discussing small variations in the orientation of the field 
in the FrCedericksz transitions experiments. 

2. Basic equations and boundary conditions 

Accounts of the physical properties and associated continuum ‘theory for liquid 
crystals are readily available in the book by de Gennes (1974) and in the reviews by 
Chandrasekhar (1976) and Stephen and Straley (1974). A detailed review of the 
equilibrium continuum theory is given by Ericksen (1976). Consequently, in this 
section, we simply summarise the basic equations. 

As Ericksen (1962) discusses, continuum theory for the static isothermal 
behaviour of a nematic liquid crystal in an electric field E, reduces to 

where W is the Helmholtz free energy per unit volume, d, (x , )  is a unit vector field 
describing the orientation of the anisotropic axis, y is an arbitrary constant, and € 1  and 
cl are dielectric constants which are assumed to satisfy 

Ell> E -  > 0 (2.2) 
for this analysis. In line with similar studies, we adopt the following form for W, 
developed by Oseen (1925) and Frank (1958): 

(2.3) 2 W = k2(dZ,,)’ + kad,.ld,., + (ki  - k2 - k4)(d1.1)2 + (k3 - kz)d,dIdk,,dk,,, 
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where k l ,  k 2 ,  k 3  and k4 are constants. Using energy considerations, Ericksen (1966) 
shows that these constants must satisfy certain inequalities. We accept these and make 
the further assumption that 

ki>O, k2 > 0 ,  k3>0, (2.4) 
thereby excluding the possibility that the above coefficients vanish. 

Choosing Cartesian axes so that the plates lie in the planes z = 0 and z = 21, where 
1 is a constant, we consider solutions of equations (2.1) and (2.3) in which the 
orientation of the anisotropic axis takes the form 

d,  = cos e ( z )  cos d ( z ) ,  d ,  =cos e ( z )  sin 4 ( z ) ,  d,  = sin e ( z ) ,  (2.5) 
with 

E, = 0, E, = 0 ,  E,  = E .  

As Deuling (1972) discusses, the field strength does not remain uniform across the gap 
between the plates since the field interacts with the distorted liquid crystal. However, 
the electric displacement Di  satisfies 

Di,i = 0, (2.7) 
which implies that D ,  is equal to a constant value D .  Reasoning parallel to that of 
Ericksen (1962) for a magnetic field results in the following constitutive equation for 
Di : 

Di = ElEi + (€ll-E~)Ekdkdi. (2.8) 
Equations (2.5), (2.6), (2.7) and (2.8) then yield 

D 
E =  

€11 sin2 e + el cos2 e ’ 
By substitution of equations (2.3), (2.5), (2.6) and (2.9) in equations (2.1) and 

elimination of the scalar y it follows that 

and 

where 

f(e) = k l  cos’ 8 + k3 sin2 8, 

g(0)  = cos2 e ( k 2  cos2 8 + k3 sin’ e), 
E a  = €11 - €1. 

Equation (2.11) integrates immediately to give 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

where b is an arbitrary constant. In the ensuing analysis it becomes apparent that we 
must investigate solutions for which both 0 and vary. Multiplying equation (2.10) 
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by the derivative of 8 and equation (2.11) by the derivative of 4, adding and 
integrating yields 

(2.16) 

where c is an arbitrary constant, Equations (2.10) and (2.16) are similar to the 
corresponding equations derived by Leslie (1970) for a twisted nematic liquid crystal 
in a uniform magnetic field, but the terms associated with the externally applied field 
have a different dependence on 8. 

As Raynes (1975) discusses, suitable treatment of the surfaces of the parallel 
plates confining a small sample of nematic liquid crystal can lead to a twisted equili- 
brium configuration with equal angles of tilt in the same sense at both solid boun- 
daries. In line with other static studies we assume strong anchoring of the anisotropic 
axis at the plates (see for example, de Gennes 1974) and impose the following 
boundary conditions: 

e(o) = d(21) = a, 4(0) = -40, 4(20 = 40, (2.17) 

where a and 40 are arbitrary constants which we may consider positive without loss of 
generality. Given the good agreement between theory and experiment for a number 
of similar transition effects, it appears reasonable to assume that the external field 
does not affect the orientation at the solid surfaces. 

3. Initial solutions 

In the absence of the electric field, it is natural to investigate a solution of equations 
(2.10) and (2.11) subject to boundary conditions (2.17) of the form 

e=a, 4 = 4 ( ~ ) .  (3.1) 

However, it turns out that such a solution is not possible unless a is zero, and so we 
seek symmetric solutions in which 

e(z)= e ( 2 i - 4 ,  O s z s l ,  (3.2) 

(2) =o ,  
z = l  

(3.3) 

where 80 is a parameter to be determined. From equation (2.15) it follows that 

(3.4) 

(3.5) 

4(z)=--4(2[-z) ,  O c z s l ,  

4(1) = 0. 

and, as a result, 

Employing equations (2.15) and (3.3) in equation (2.16) then yields 

(3.6) 

Thus, in view of the constraints (2.4), a necessary condition to obtain solutions of 
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equation (3 .6 )  is 

0 < g ( e 0 w  g ( e ) ,  ( 3 .7 )  
and so the forms of the initial solutions depend on the nature of g ( 8 ) .  Leslie (1975)  
reaches the same conclusion in a discussion of similar solutions. 

The function g ( 8 )  is even in 8 and detailed examination of its behaviour in the 
interval [0, 71'121 shows that it decreases monotonically to zero if 

k3 s 2k2. ( 3 . 8 )  
When k3 exceeds 2k2 ,  g ( 8 )  initially increases to a maximum value at e,, where 

and then decreases monotonically towards zero for values of 8 in the interval 
(ec, 71'12). Therefore, as the solution of equation ( 3 . 6 )  depends on the relative magni- 
tudes of the Frank constants and the magnitude of a, it is convenient to treat 
separately three distinct cases. 

3.1. k3 < 2k2 

As g ( 8 )  decreases monotonically for 8 E (0, 71'12) it follows from condition (3 .7 )  that 

a s e s eo < 4, O s z s l .  (3 .10 )  

Integration of equations (2 .15 )  and (3 .6 )  then results in 

(3 .11 )  

and 

(3 .12 )  

The solution is then completed by equations ( 3 . 2 )  and (3 .4 ) ,  provided that the 
parameters eo and b satisfy 

(3 .13 )  

(3 .14 )  

Equation (3 .13 )  serves to evaluate the constant b, and equation (3 .14 )  determines 
as a function of qj0. 

The change of variable 

sin A = sin @/sin Bo 

reduces equations (3 .13)  and (3 .14 )  to 

(3 .15 )  

(3 .16 )  
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and 

f (8) (3.17) 
n/2 

" = (g(e0))1/2 6, (g(8)[2k2 - k3 + (k3 - k2)(sin2 8 +sin2 eo)] 
where 

sin A. = sin a/sin 80. 

Approximation of the above equations for small variations in a and 8 gives 

(3.18) 

and 

sin A. = a / O 0  (3.20) 

respectively. Solving these equations for b and A. and using equation (3.20) even- 
tually gives 

Hence Bo does not differ significantly from a unless 

(3.21) 

(3.22) 

is close to w/2. When the value of 4o is ~ / 4 ,  as is generally the case, it follows that the 
maximum distortion across the plates is not too large provided 4kl exceeds (2k2- k3) 

by a significant amount. Existing data on these elastic constants suggest that this 
condition is unlikely to be violated, except in the neighbourhood of a smectic tran- 
sition (see for example, Ericksen 1976). 

3.2. k3 = 2 kZ 

As g(8) decreases monotonically towards zero in (0, m/2) 8 again satisfies conditions 
(3.10). An inspection of the above solution for a suitable approximation when 8 and a 
are both small suggests that we examine solutions for 8 and 4 of the form 

(3.23) 

(3.24) 

where p and q are positive integers, and 0 and@ are functions of t such that 

O(0) = O(21) = @(O) = @(21) = 0. (3.25) 

These estimates are based on the assumption that the form of the solution for small 
angles of tilt does not differ significantly from the solution for an untilted twisted 
nematic in the same configuration. 

When we substitute the estimates (3.23) and (3.24) into equations (2.10) and 
(2.11) and retain only those terms in the lowest powers of a, it follows that 

P = 3 ,  q = 6 .  (3.26) 
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Hence first approximations to the differential equations (2.10) and (2.1 1) are 

(3.27) 

(3.28) 

respectively. When these equations are solved subject to boundary conditions (3.25), 
use of equations (3.23) and (3.24) yields estimates for the tilt and twist between the 
plates, the maximum tilt being 

8 0  = a  + k2a3&/kl. (3.29) 

The same estimate for Bo also follows less directly from the integral solutions. 

3.3 k3>2k2 

When 8, exists three distinct possibilities arise, depending on the relative magnitudes 
of a and 8,. If a is less than e,, solutions of equation (3.6) take the form 

o s  e o c  e sa < e,, O s z s l .  (3.30) 

We must ensure that Bo is non-negative to avoid values of 8 for which g(8 )  does not 
satisfy condition (3.7). When a is greater than e,, a necessary condition to obtain a 
solution of equation (3.6) is 

(3.31) 

For the case when cy equals e,, both types of solution described above are equally 
likely. In general, since a is small, our interest is solely in solutions of the type (3.30). 
However, if 0, is also small, we must consider all three possibilities. The discussion of 
solutions of type (3.31) in this event then follows from the case in § 3.1, and therefore 
we need only consider solutions of the type (3.30). 

The form of the solution and the conditions to be satisfied by the parameters Bo 
and b are derived in the same way as that for § 3.1. The expressions in equations 
(3.11), (3.12), (3.13) and (3.14) are unchanged except for the fact that the limits are 
reversed in the integrals. The change of variable 

cosh A = sin 8/sin Bo, (3.32) 

and approximation for small variations in 8 and a in the resulting equations for Bo and 
b eventually yields the following expression for the maximum distortion in e: 

(3.33) 

Therefore Bo is always smaller than a and so the variation in the alignment of the 
anisotropic axis is always small and less than the tilt at the boundaries. 

4. Distorted solutions 

In the presence of the field the initial solutions derived above are naturally no longer 
valid, and so we investigate solutions of equations (2.10) and (2.11) subject to 
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boundary conditions (2.17) which are of the form in equation (3.2) with 

where 0, is a parameter to be determined. It may be possible to construct other 
solutions of a different form. However, we ignore these here and consider only 
solutions with the properties (3.2) and (4. l ) ,  this essentially assuming that these simple 
solutions are those favoured by the usual energy criterion. Using the conditions (4.1) 
and equation (2.15) in equation (2.16) yields 

(4.2) 
The results (3.4) and (3.5) again follow from integration of equation (2.15). 

We first consider solutions for which the inclination of the anisotropic axis exceeds 
the tilt at the boundaries. These occur when k3 is less than or equal to 2k2, or when 8, 
is small and solutions in the interval (ec, ~ / 2 )  are sought. Proceeding as before and 
integrating equations (2.15) and (4.2) one readily obtains 

and 

4 1 - 1 
do= lam (f(O)[D’( € 1 1  sin2 e +eL cos’ e E L I  sin’ e, + el cos e, 

By making the change of variable 

sin A = sin elsin Om, 

equations (4.3) and (4.4) become 

b ’F (8, e,)) b dh -’] ”’ EaD2 
g(e )  COS e ’ 

where 

F(8,e,) = k 3  - 2kz - ( k 3  - k2)(sin2 0 +sin’ e,), 
and 

sin A, = sin a/sin Om. 

(4.3) 

(4.4) 

(4.5) 
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Approximation of the above equations for small variations in a and 8 and solving for 
b and A, gives 

E a I 2 D 2 / E :  + ( 2 k 2 -  k3)& 
sec[( ki  2)1’2]. (4 .10 )  

Therefore the maximum distortion across the plates is of the same order as a provided 

E a I 2 D 2 / E :  + (2k2- k3)40 2, 1’2 < -. 7T 

ki 2 

However, if 

E ~ ~ ~ E ~  E k l ( ~ / 2 ) ~  + (k3 - 2k2)&, 

(4 .11 )  

(4 .12 )  

the distortion from the initial orientation pattern is significant. 
When k3 exceeds 2k2  by a finite amount, we obtain approximate initial solutions in 

the interval (0, 8,) for which eo is less than cy. Therefore solutions in which 8, is at first 
less than a can occur when the field is present. Such solutions are derived in a manner 
similar to that used above. The change of variable 

cosh A = sin B/sin Om, (4 .13 )  

and approximation of the resulting equations eventually yields 

(k3 - 2 k2)4; - E a I 2  D ’ / E  : 
ki 

8, = a sech (4 .14 )  

Thus the maximum distortion in this case is less than the tilt at the boundaries until 

(4 .15 )  

when the tilt is uniform across the plates. For field strengths which exceed this value 8 
and 8, are greater than a, and the approximate solution follows the same lines as that 
discussed above. Consequently, the distortion again remain small until the field 
strength approaches that of equation (4 .12) .  

In conclusion, therefore, our analysis confirms the intuitive prejudice borne out by 
practice that changes in the initial orientation of the anisotropic axis remain small 
until the electric field strength reaches the value in equation (4 .12) .  This threshold 
field strength equals that intimated by Raynes (1975)  for a twisted nematic without tilt 
in an electric field. The corresponding calculations for a magnetic field (Fraser 1976) 
are simpler, but are qualitatively similar to those described above, the effective field 
strength being equal to that for a twisted nematic without tilt (Leslie 1970).  General- 
ising from these results and that of Dafermos (1970) ,  we conclude that small angles of 
tilt do not appear to alter the threshold field strengths €or significant changes in 
alignment in the Frkedericksz transitions experiments for nematic liquid crystals. 
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